NYCU Homework 2 Solved

30.00 $

Category:

Description

Rate this product

 

Description :  

1.Naive Bayes classifier

Create a Naive Bayes classifier for each handwritten digit that support discrete and

continuousfeatures.

Input:

  1. Training image data from MNIST

You Must download the MNIST from this website and parse the data by yourself. (Please do not use the build in dataset or you’ll not get 100.)Please read the description in the link to understand the format.

Basically, each image is represented by bits (Whole binary file is in big endian format; you need to deal with it), you can use char arrary to store ana image.

There are some headers you need to deal with as well, please read the link formore details.

  1. Training lable data from MNIST.
  2. Testing image from MNIST
  3. Testing label from MNIST
  4. Toggle option

0: discrete mode

1: continuous mode

 

TRAINING SET IMAGE FILE (train-images-idx3-ubyte)

offset type value description
0000 32 bit integer 0x00000803(2051) magic number
0004 32 bit integer 60000 number of images
0008 32 bit integer 28 number of rows
0012 32 bit integer 28 number of columns
0016 unsigned byte ?? pixel
0017 unsigned byte ?? pixel
xxxx unsigned byte ?? pixel

 

TRAINING SET LABEL FILE (train-labels-idx1-ubyte)

 

offset type value description
0000 32 bit integer 0x00000801(2049) magic number
0004 32 bit integer 60000 number of items
0008 unsigned byte ?? label
0009 unsigned byte ?? label
xxxx unsigned byte ?? label

The labels values are from 0 to 9.

Output:

Print out the the posterior (in log scale to avoid underflow) of the ten categories (0-9) for each image in INPUT 3. Don’t forget to marginalize them so sum it up will equal to 1.

For each test image, print out your prediction which is the category having the highest posterior, and tally the prediction by comparing with INPUT 4.

Print out the imagination of numbers in your Bayes classifier

For each digit, print a  binary image which 0 represents a white pixel, and 1 represents a black pixel.

The pixel is 0 when Bayes classifier expect the pixel in this position should less then 128 in original image, otherwise is 1.Calculate and report the error rate in the end.

Function:

  1. In Discrete mode:

Tally the frequency of the values of each pixel into 32 bins. For example, The gray level 0 to 7 should be classified to bin 0, gray level 8 to 15 should be bin 1 … etc. Then perform Naive Bayes classifier. Note that to avoid empty bin, you can use a peudocount (such as the minimum value in other bins) for instead.

  1. In Continuous mode:

Use MLE to fit a Gaussian distribution for the value of each pixel. Perform Naive Bayes classifier.

 

40 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 0 1 1 1 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0

41
42
43 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
44 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
45 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
46 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0
47 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0
48

49

0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0
0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
50 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0
51 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
52 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0

53
54
55 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
56 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

57
58

59

60

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 

… all other imagination of numbers goes here …          

 

9:

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

61
62
63
64
65
66 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
67 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
68

69

70

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0

71
72

73

0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 1 0 0 0 0 0 0 0 0 0
74 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0
75 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0
76 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0
77 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0
78 0 0 0 0 0 0 0 0 0 1 1 0 0 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
79

80

0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0 0 0
81 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0 0
82

83

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0
84 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
85 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
86 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

87
88 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
 

2.Online learning

Use online learning to learn the beta distribution of the parameter p (chance to see 1) of the coin tossing trails in batch.

Input:1.A file contains many lines of binary outcomes:

 

 

  1. parameter a for the initial beta prior
  2. parameter b for the initial beta prior

Output: Print out the Binomial likelihood (based on MLE, of course), Beta prior and posterior

 

5

6

 

case 2: 0110101

7 Likelihood: 0.29375515303997485
8    Beta prior:     a = 11 b = 11
9 Beta posterior: a = 15 b = 14
10

11

 

case 3: 010110101101

 
12

13

14

15

16

17

18

19

20

21

22

23

Likelihood: 0.2286054241794335
   Beta prior:     a = 15 b = 14
Beta posterior: a = 22 b = 19
   
case 4: 0101101011101011010
Likelihood: 0.18286870706509092
   Beta prior:     a = 22 b = 19
Beta posterior: a = 33 b = 27
   
case 5: 111101100011110
Likelihood: 0.2143070548857833
   Beta prior:     a = 33 b = 27
24 Beta posterior: a = 43 b = 32
25  

case 6: 101110111000110

Likelihood: 0.2065976052

9408
26
27
28

29

30

31

32

33

34

35

36

37

   Beta prior:     a = 43 b = 32
Beta posterior: a = 52 b = 38
   
   
case 7: 1010010111  
Likelihood: 0.25082265600000003
   Beta prior:     a = 52 b = 38
Beta posterior: a = 58 b = 42
   
   
case 8: 11101110110  
Likelihood: 0.2619678932 864457
38    Beta prior:     a = 58 b = 42
39 Beta posterior: a = 66 b = 45
40

41

 

case 9: 01000111101

 
42 Likelihood: 0.23609128871506807
43    Beta prior:     a = 66 b = 45
44 Beta posterior: a = 72 b = 50
45

46

 

case 10: 110100111

 
47 Likelihood: 0.27312909617436365
48    Beta prior:     a = 72 b = 50
49 Beta posterior: a = 78 b = 53
50

51

 

case 11: 01101010111

 
52 Likelihood: 0.24384881449471862
53    Beta prior:      a = 78 b = 53

3. Prove Beta-Binomial conjugation

 

Try to proof Beta-Binomial conjugation and write the process on paper.

※ You should write down the proof process on paper and take a picture. When you hand in HW02, it must contain your code and picture.

 

Use whatever programming language you prefer.

You can’t use numpy.random.beta in HW02. That would be great if you implement all distribution by yourself.

HW02 must contain your code and proof process (can be .pdf or any image format).

  • ML_HW02-qphzjw.zip