## Description

**Note**: binary_inbinary_in is a Python list, representing the number in binary form.

**Example**: The number 1010 in binary would be input as [1, 0, 1, 0].

def BinToDec(binary_in):def BinToDec(binary_in):

# initialize# initialize

decimal_out = 0decimal_out = 0

# add up the binary expression of the decimal number# add up the binary expression of the decimal number

for position in for position in Choose…range(0, len(binary_in))range(1, len(binary_in))range(0, len(binary_in)-1)range(1, len(binary_in)+1) :

decimal_out = decimal_out + binary_in[len(binary_in)-position-1]*(2**decimal_out = decimal_out + binary_in[len(binary_in)-position-1]*(2**Choose…positionposition-1position+1 ))

return (decimal_out)

**DecToBin**

Write a Python function DecToBin() that takes in a nonnegative integer dd and returns a Python list of 00’s and 11’s corresponding to the binary representation of dd.

For example:

Test | Result |
---|---|

print(DecToBin(0)) |
[0] |

print(DecToBin(10)) |
[1, 0, 1, 0] |

print(DecToBin(241)) |
[1, 1, 1, 1, 0, 0, 0, 1] |

**ParityParty**

Write a Python function ParityParty() that takes in a nonnegative integer dd and returns a list:

- the first element of the output list is a 0 if the number dd is even, and 1 if dd is odd,
- the second element of the output list is d/2d/2 if dd is even, and (dâˆ’1)/2(dâˆ’1)/2 if dd is odd.

A potentially useful reminder: When you divide or multiply an integer by a floating point number in Python, the result will be a floating point number. If the test cases require an integer as output for d/2d/2 or (dâˆ’1)/2(dâˆ’1)/2, you may need to account for this…

For example:

Test | Result |
---|---|

print(ParityParty(0)) |
[0, 0] |

print(ParityParty(10)) |
[0, 5] |

print(ParityParty(33)) |
[1, 16] |